Functional, fractal nonlinear response with application to rate processes with memory, allometry, and population genetics.
نویسندگان
چکیده
We give a functional generalization of fractal scaling laws applied to response problems as well as to probability distributions. We consider excitations and responses, which are functions of a given state vector. Based on scaling arguments, we derive a general nonlinear response functional scaling law, which expresses the logarithm of a response at a given state as a superposition of the values of the logarithms of the excitations at different states. Such a functional response law may result from the balance of different growth processes, characterized by variable growth rates, and it is the first order approximation of a perturbation expansion similar to the phase expansion. Our response law is a generalization of the static fractal scaling law and can be applied to the study of various problems from physics, chemistry, and biology. We consider some applications to heterogeneous and disordered kinetics, organ growth (allometry), and population genetics. Kinetics on inhomogeneous reconstructing surfaces leads to rate equations described by our nonlinear scaling law. For systems with dynamic disorder with random energy barriers, the probability density functional of the rate coefficient is also given by our scaling law. The relative growth rates of different biological organs (allometry) can be described by a similar approach. Our scaling law also emerges by studying the variation of macroscopic phenotypic variables in terms of genotypic growth rates. We study the implications of the causality principle for our theory and derive a set of generalized Kramers-Kronig relationships for the fractal scaling exponents.
منابع مشابه
On The Behavior of Malaysian Equities: Fractal Analysis Approach
Fractal analyzing of continuous processes have recently emerged in literatures in various domains. Existence of long memory in many processes including financial time series have been evidenced via different methodologies in many literatures in past decade, which has inspired many recent literatures on quantifying the fractional Brownian motion (fBm) characteristics of financial time series. Th...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملPreferences, Descriptions, and Response Latency to Fractal Images Among Individuals With and Without Schizophrenia
Background: Early simple, low-cost diagnosis of schizophrenia may accelerate the beginning of the treatment process. Here, utilizing the projective tools, including fractal images, are some of the diagnostic aids. Objectives: This study aimed to compare the preferences, descriptions, and response latency to fractal images between schizophrenic and healthy individuals. Materials & Methods: In ...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملTwo new three and four parametric with memory methods for solving nonlinear equations
In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 12 شماره
صفحات -
تاریخ انتشار 2007